Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Neuropeptides have tremendous potential for application in modern medicine, including utility as biomarkers and therapeutics. To overcome the inherent challenges associated with neuropeptide identification and characterization, data‐independent acquisition (DIA) is a fitting mass spectrometry (MS) method of choice to achieve sensitive and accurate analysis. It is advantageous for preliminary neuropeptidomic studies to occur in less complex organisms, with crustacean models serving as a popular choice due to their relatively simple nervous system. With spectral libraries serving as a means to interpret DIA‐MS output spectra, andCancer borealisas a model of choice for neuropeptide analysis, we performed the first spectral library mapping of crustacean neuropeptides. Leveraging pre‐existing data‐dependent acquisition (DDA) spectra, a spectral library was built using PEAKS Online. The library is comprised of 333 unique neuropeptides. The identification results obtained through the use of this spectral library were compared with those achieved through library‐free analysis of crustacean brain, pericardial organs (PO), and thoracic ganglia (TG) tissues. A statistically significant increase (Student'st‐test,Pvalue < 0.05) in the number of identifications achieved from the TG data was observed in the spectral library results. Furthermore, in each of the tissues, a distinctly different set of identifications was found in the library search compared to the library‐free search. This work highlights the necessity for the use of spectral libraries in neuropeptide analysis, illustrating the advantage of spectral libraries for interpreting DIA spectra in a reproducible manner with greater neuropeptidomic depth.more » « less
-
Abstract Glycosylated neuropeptides were recently discovered in crustaceans, a model organism with a well‐characterized neuroendocrine system. Several workflows exist to characterize enzymatically digested peptides; however, the unique properties of endogenous neuropeptides require methods to be re‐evaluated. We investigate the use of hydrophilic interaction liquid chromatography (HILIC) enrichment and different fragmentation methods to further probe the expression of glycosylated neuropeptides inCallinectes sapidus. During the evaluation of HILIC, we observed the necessity of a less aqueous solvent for endogenous peptide samples. This modification enabled the number of detected neuropeptide glycoforms to increase almost two‐fold, from 18 to 36. Product ion‐triggered electron‐transfer/higher‐energy collision dissociation enabled the site‐specific detection of 55 intact N‐ and O‐linked glycoforms, while the faster stepped collision energy higher‐energy collisional dissociation resulted in detection of 25. Additionally, applying this workflow to five neuronal tissues enabled the characterization of 36 more glycoforms of known neuropeptides and 11 more glycoforms of nine putative novel neuropeptides. Overall, the database of glycosylated neuropeptides in crustaceans was largely expanded from 18 to 136 glycoforms of 40 neuropeptides from 10 neuropeptide families. Both macro‐ and micro‐heterogeneity were observed, demonstrating the chemical diversity of this simple invertebrate, establishing a framework to use crustacean to probe modulatory effects of glycosylation on neuropeptides.more » « less
An official website of the United States government
